Environmental dissolved organic matter governs biofilm formation and subsequent linuron degradation activity of a linuron-degrading bacterial consortium.
نویسندگان
چکیده
It was examined whether biofilm growth on dissolved organic matter (DOM) of a three-species consortium whose members synergistically degrade the phenylurea herbicide linuron affected the consortium's integrity and subsequent linuron-degrading functionality. Citrate as a model DOM and three environmental DOM (eDOM) formulations of different quality were used. Biofilms developed with all DOM formulations, and the three species were retained in the biofilm. However, biofilm biomass, species composition, architecture, and colocalization of member strains depended on DOM and its biodegradability. To assess the linuron-degrading functionality, biofilms were subsequently irrigated with linuron at 10 mg liter(-1) or 100 μg liter(-1). Instant linuron degradation, the time needed to attain maximal linuron degradation, and hence the total amount of linuron removed depended on both the DOM used for growth and the linuron concentration. At 10 mg liter(-1), the final linuron degradation efficiency was as high as previously observed without DOM except for biofilms fed with humic acids which did not degrade linuron. At 100 μg liter(-1) linuron, DOM-grown biofilms degraded linuron less efficiently than biofilms receiving 10 mg liter(-1) linuron. The amount of linuron removed was more correlated with biofilm species composition than with biomass or structure. Based on visual observations, colocalization of consortium members in biofilms after the DOM feed appears essential for instant linuron-degrading activity and might explain the differences in overall linuron degradation. The data show that DOM quality determines biofilm structure and composition of the pesticide-degrading consortium in periods with DOM as the main carbon source and can affect subsequent pesticide-degrading activity, especially at micropollutant concentrations.
منابع مشابه
Synergistic degradation of linuron by a bacterial consortium and isolation of a single linuron-degrading variovorax strain.
The bacterial community composition of a linuron-degrading enrichment culture and the role of the individual strains in linuron degradation have been determined by a combination of methods, such as denaturing gradient gel electrophoresis of the total 16S rRNA gene pool, isolation and identification of strains, and biodegradation assays. Three strains, Variovorax sp. strain WDL1, Delftia acidovo...
متن کاملEnhanced mineralization of diuron using a cyclodextrin-based bioremediation technology.
The phenylurea herbicide diuron [N-(3,4-dichlorophenyl)-N,N-dimethylurea] is widely used in a broad range of herbicide formulations and, consequently, it is frequently detected as a major soil and water contaminant in areas where there is extensive use. Diuron has the unfortunate combination of being strongly adsorbed by soil organic matter particles and, hence, slowly degraded in the environme...
متن کاملHylA, an alternative hydrolase for initiation of catabolism of the phenylurea herbicide linuron in Variovorax sp. strains.
Variovorax sp. strain WDL1, which mineralizes the phenylurea herbicide linuron, expresses a novel linuron-hydrolyzing enzyme, HylA, that converts linuron to 3,4-dichloroaniline (DCA). The enzyme is distinct from the linuron hydrolase LibA enzyme recently identified in other linuron-mineralizing Variovorax strains and from phenylurea-hydrolyzing enzymes (PuhA, PuhB) found in Gram-positive bacter...
متن کاملRapid mineralization of the phenylurea herbicide diuron by Variovorax sp. strain SRS16 in pure culture and within a two-member consortium.
The phenylurea herbicide diuron [N-(3,4-dichlorophenyl)-N,N-dimethylurea] is widely used in a broad range of herbicide formulations, and consequently, it is frequently detected as a major water contaminant in areas where there is extensive use. We constructed a linuron [N-(3,4-dichlorophenyl)-N-methoxy-N-methylurea]- and diuron-mineralizing two-member consortium by combining the cooperative deg...
متن کاملElucidating the key member of a linuron-mineralizing bacterial community by PCR and reverse transcription-PCR denaturing gradient gel electrophoresis 16S rRNA gene fingerprinting and cultivation.
A bacterial community from Danish agricultural soil was enriched with linuron [N-(3,4-dichlorophenyl)-N'-methoxy-N'-methylurea] as the sole carbon and nitrogen source. The community mineralized [ring-U-14C]linuron completely to 14CO2 and 14C-biomass. Denaturing gradient gel electrophoresis analysis and cultivation revealed that a Variovorax sp. was responsible for the mineralization activity.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Applied and environmental microbiology
دوره 79 15 شماره
صفحات -
تاریخ انتشار 2013